

Uniform Sampling over Episode Difficulty

Sébastien M. R. Arnold^{*, 1}, Guneet S. Dhillon^{*, 2}, Avinash Ravichandran³, Stefano Soatto^{3, 4} seb.arnold@usc.edu, guneet.dhillon@stats.ox.ac.uk, ravinash@amazon.com, soattos@amazon.com ¹University of Southern California, ²University of Oxford, ³Amazon Web Services, ⁴University of California, Los Angeles *Equal Contribution, done at AWS

Summary

We ask

• How to best sample episodes for few-shot classification?

TL;DR

• Sampling uniformly over episode difficulty outperforms curriculum learning, easy / hard mining, and the standard baseline.

Our Contributions

- Extensive study of episode difficulty, which shows that difficulty is approx. normally distributed, and that (relative) episode difficulty is invariant to model architecture, training algorithm, or model parameters.
- Propose **importance sampling over episode difficulty** to implement 5 sampling schemes for episodic training.
- Show that sampling episodes uniformly over difficulty outperforms other schemes, on many few-shot and crossdomain benchmarks.

Background

Classification episode τ consist of

- support set τ_S : few (x, y) samples used to (quickly) solve classification task encoded by episode.
- query set τ_0 : samples used to evaluate the how well the episode was solved.

Episodic training denotes maximizing the likelihood of all possible episodes under model parameters θ :

 $\max_{\Delta} \mathbb{E}_{\tau} [\ell(\tau_Q \mid \theta, \tau_S)]$

Episode difficulty, in our case, is the negative log-likelihood of episode τ : $\Omega_{\theta}(\tau) = -\log \ell(\tau_O \mid \theta, \tau_S)$

Importance Sampling for Episodic Training

Importance Sampling (IS) reweights a sample x from proposal distribution q(x) with weight $\frac{p(x)}{q(x)}$ so it comes from target distribution p(x).

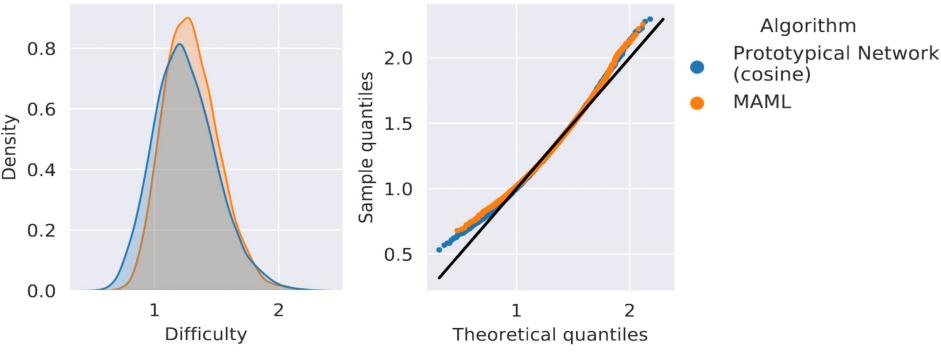
Importance Sampling for Episodes uses IS to sample episodes from target difficulty distribution $q(\tau)$ from proposal difficulty distribution $p(\tau)$:

$$\mathbb{E}_{\tau \sim p}[\Omega_{\theta}(\tau)] = \mathbb{E}_{\tau \sim q} \left[\frac{p(\tau)}{q(\tau)} \ \Omega_{\theta}(\tau) \right]$$

Use **Effective Sample Size** to adjust for small mini-batches.

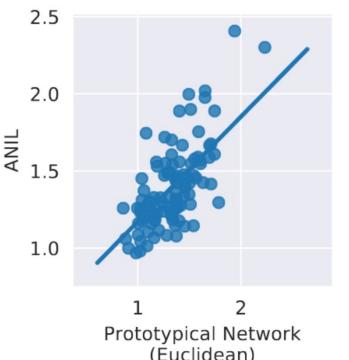
Understanding Episode Difficulty

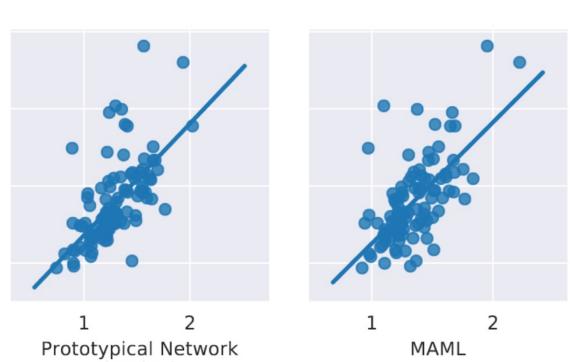
Episode difficulty is ~ normally distributed.



Density and Q-Q plots of episode difficulty for ProtoNet and MAML on 5-ways 1-shot Mini-ImageNet episodes. The bell curve and (almost) linear relationship suggest difficulty is approximately normally distributed.

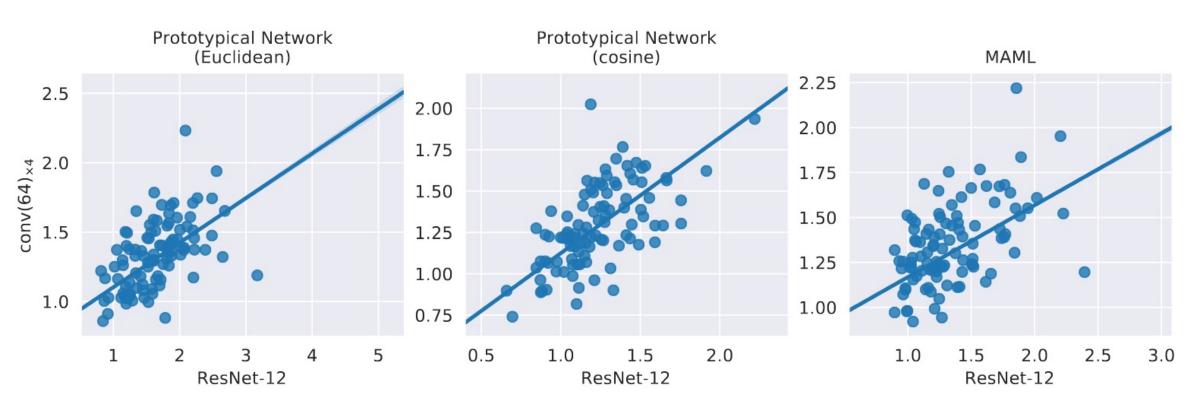
Episode transfers across training algorithms.





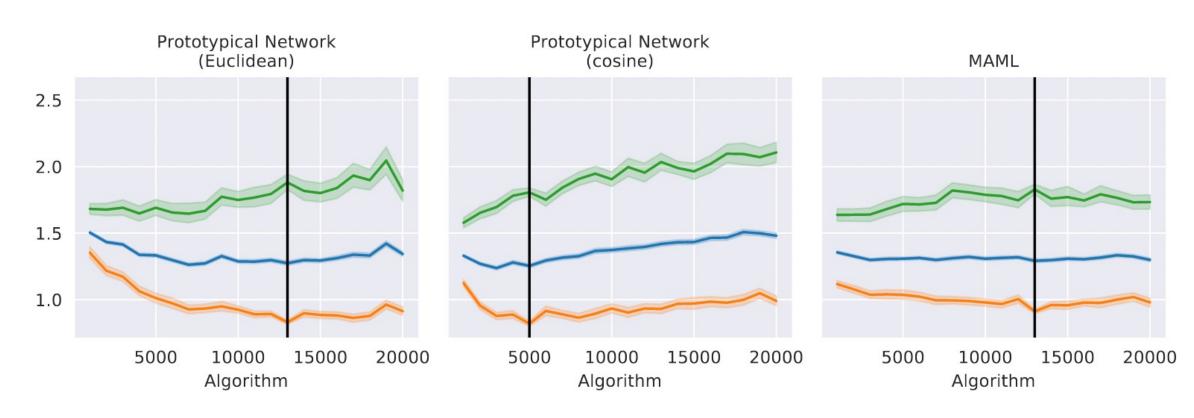
Correlation of episode difficulty for ANIL and ProtoNet (Euclidean), ProtoNet (Cosine), or MAML on 10k 5-ways 1-shot Mini-ImageNet episodes. Spearman's correlation > 0.65 for all, showing difficulty transfers across algorithms.

Episode transfers across network architectures.

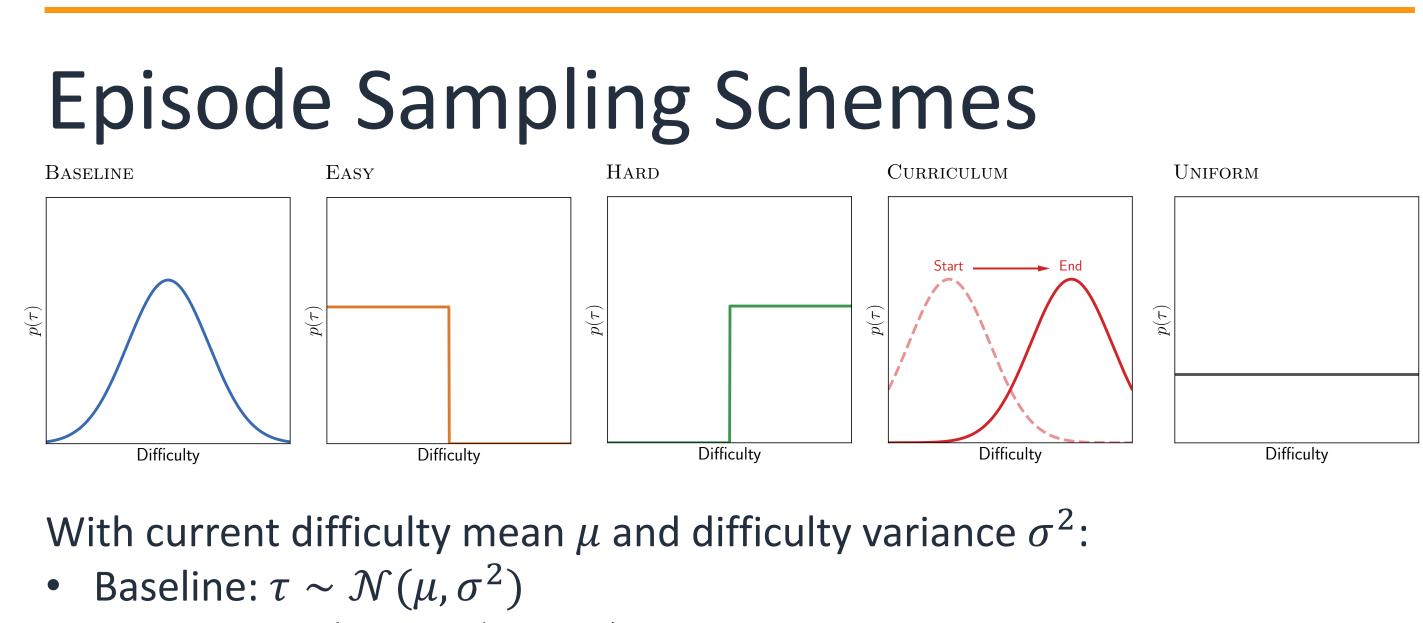


Correlation of episode difficulty for a 4-layer CNN and a 12-layer ResNet (trained with ProtoNet or MAML) on 10k 5-ways 1-shot Mini-ImageNet episodes. Spearman's correlation > 0.55 for all, showing difficulty transfers across architectures.

Episode transfers across model parameters.



Tracking the average difficulty for the 50 easier and 50 harder Mini-ImageNet episodes during training. Easy episodes stay easy; hard episodes stay hard.



- Easy: $\tau \sim \mathcal{U} (\mu 2.58 \sigma, \mu)$
- Hard: $\tau \sim \mathcal{U}(\mu, \mu + 2.58 \sigma)$
- Curriculum: $\tau \sim \mathcal{N}(\mu_t, \sigma^2)$ with $\mu_t = \mu + 2.58(2t 1)\sigma$

Improving Few-Shot Learning

- Compare sampling schemes across 24 scenarios (varying architectures, algorithms, datasets, settings).
- Tally how often a scheme is among the best performing.
- Uniform dominates; Baseline & Curriculum second best.

Improving Cross-Domain Transfer

- Zero in on Uniform vs Baseline for crossdomain transfer.
- Pretrain models on Mini-ImageNet; evaluate accuracy when transferred to 4 unseen datasets. Total: 64 scenarios. • Uniform is best on 49/64 scenarios, among
- best on 61/64.

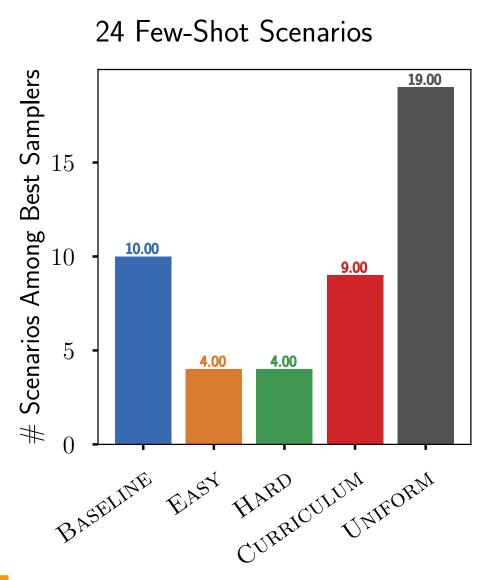
Learn More

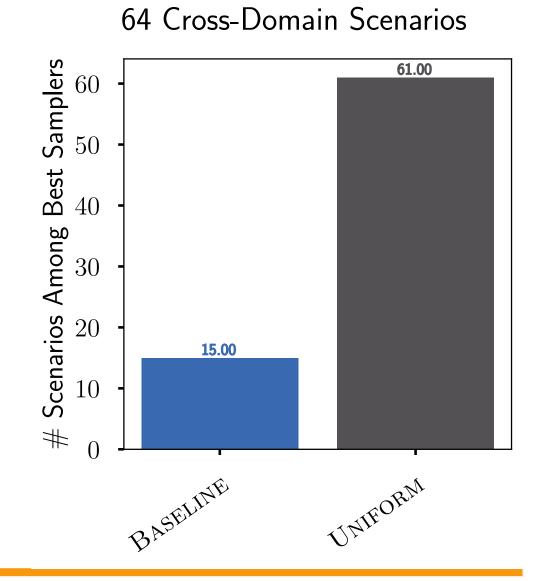
In the paper: full tables, improving SOTA with FEAT, online vs offline samplers, and more...

Available at http://sebarnold.net/projects/eis

science

• Uniform: $\tau \sim \mathcal{U} (\mu - 2.58 \sigma, \mu + 2.58 \sigma)$





http://sebarnold.net/projects/eis