

A Meta-Learning Library for Researchers

Summary

The goal of meta-learning is to enable agents to learn how to learn. That is, we would like our agents to become better learners as they solve more and more tasks.

But meta-learning algorithms are difficult to implement, and standard benchmarks all use different reward functions or pre-processing steps.

Task 1		B	E	M	2
Task 2	5		δ,	5	B
Task 3		C	Y	P	Ê
Task 4	か	あ	す	ふ	
Test	大		元	Í	I

Meta Supervised Learning

learn2learn solves those issues by providing low- and high-level utilities to easily enable researchers (and practitioners!) to develop new meta-learning algorithms and compare them against well-tested implementations.

pip install learn2learn

```
import learn2learn as l2l
```

```
def fast_adapt(adaptation_data, evaluation_data, learner, adaptation_steps=5):
   for step in range(adaptation_steps):
       train_error = loss(learner, adaptation_data)
       learner.adapt(train_error)
   eval_error = loss(learner, evaluation_data)
   eval_accuracy = accuracy(learner, evaluation_data)
   return eval_error, eval_accuracy
```

train_dataset = l2l.vision.datasets.MiniImagenet(root='./data', mode='train') train_dataset = l2l.data.MetaDataset(train_dataset) train_generator = l2l.data.TaskGenerator(dataset=train_dataset, ways=5, tasks=20000)

Create model

```
model = l2l.vision.models.MiniImagenetCNN(output_size=5)
maml = l2l.algorithms.MAML(model, lr=0.5, first_order=False)
opt = optim.Adam(maml.parameters(), 0.003)
```

```
for iteration in range(num_iterations):
   opt.zero_grad()
   # Compute meta-training loss
    learner = maml.clone()
   adaptation_data = train_generator.sample(shots=1)
```


Meta Reinforcement Learning

- Support for meta-supervised and metareinforcement learning.
- High-level wrappers around popular metalearning algorithms. (FO/MAML, MetaSGD.)
- Many low-level algorithms implemented.
- Universal task generators for supervised learning. (Works with any Dataset!) Standard benchmark definitions and downloaders.

evaluation_data = train_generator.sample(shots=1, task=adaptation_data.sampled_task) evaluation_error, evaluation_accuracy = fast_adapt(adaptation_data, evaluation_data, learner) evaluation_error.backward()

print('Meta-Train Loss', evaluation_error.item()) print('Meta-Train Accuracy', evaluation_accuracy.item())

- Unit and regression tested.
- Carefully nurtured documentation.

Use *any* module, *any* library, *any* dataset.

