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Outline

Goal
Draw connection from natural gradient to various ML/optimization topics.

Outline
1. Euclidean and Riemannian Gradient Optimization

2. Relation to Second-Order Optimization

3. Relation to Evolutionary Strategies

4. Relation to Variational Inference

5. Conclusions
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Euclid vs Riemann

Euclidean Geometry
• Any 2 points can be connected.

• A straight line can be extended infinitely.

• A circle is described by its center and radius.

• All right angles are equal to one another.

• If two lines intersect, the sum of interior angles of any segment connecting

them is less than 180 degrees.

Riemannian Geometry drops the last two axioms, in order to study smooth
manifolds endowed with a localmetric.
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Computing Distances

Question How do we compute the shortest distance between θ1 and θ2 on a

differentiable manifold M ?

Answer Find the geodesic curve C and then,

d(θ1,θ2) =
∫

∞

−∞

||C′(t)||dt =
∫

∞

−∞

√
C′(t)>FC′(t)dt

Warning In the Riemannian case, the metric F depends on t.
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Why is it relevant ?

Observation 1 Information about the geometry of the manifold can help us
navigate it.
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Riemannian Gradient Optimization

Gradient Descent
θt+1 = θt−α∇θt f (θt)

≈ argmax
θ ′

{
f (θ ′)− 1

2α

∥∥θt−θ
′∥∥2

2

}
+O

(
α

2)
ProblemWhy use L2 as the metric ?

Riemannian Gradient Descent
θt+1 = θt−αF−1

∇θt f (θt)

Remark 1We use F−1
to recondition the problem back to Euclidean space.

(c.f. Nash Embedding Theorem)
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The Natural Gradient

Observation 2 Our ML models are probability distributions.
Remark 2We often minimize the KL divergence.

Idea Let’s put 2 and 2 together.
Optimize on the Riemannian space of probability distributions defined by the KL

divergence.

F = Ex∼PX

[
∇ logpθ (x) ·∇ logpθ (x)>

]
∇̃θ = F−1

∇θ f (θ)
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Parameter & Function Space

A

B

A

B

Parameter Space Function Space

p
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Popular Variation

Let

• (x,y)∼ DX,Y be a set of data points, and

• F−1∇θ f (θ) be the natural gradient of the model pθ (y|x).

True Fisher Matrix
F = Ex∼DX

[
Ey∼PY|X

[
∇ logpθ (y|x) ·∇ logpθ (y|x)>

]]

Empirical Fisher Matrix
F̄ = Ex,y∼DX,Y

[
∇ logpθ (y|x) ·∇ logpθ (y|x)>

]
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The Issue

Computing F−1 is often intractable !
Computing those expectations is hard.

Consider a Gaussian model with θ = [µ,Σ]. If |µ|= n,

• storing F requires O
(
n4
)
memory,

• computing F−1
requires at least O

(
(n2)2.373

)
time complexity.

We resort to approximations such as K-FAC, Topmoumoute, TANGO, TRPO, etc. . .
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Relation to 2nd Order Optimization

F = Ex∼DX

[
Ey∼PY|X

[
∇ logpθ (y|x) ·∇ logpθ (y|x)>

]]
= Ex∼DX

[
Ey∼PY|X

[
−∇

2 logpθ (y|x)
]]

Newton’s Method [1]
H = Ex,y∼DX,Y

[
∇

2 logpθ (y|x)
]

Adagrad
C = Ex,y∼DX,Y

[(
∇ logpθ (y|x) ·∇ logpθ (y|x)>

) 1
2
]

Note Adam is a diagonalized Adagrad + momentum.

21



Relation to 2nd Order Optimization

F = Ex∼DX

[
Ey∼PY|X

[
∇ logpθ (y|x) ·∇ logpθ (y|x)>

]]
= Ex∼DX

[
Ey∼PY|X

[
−∇

2 logpθ (y|x)
]]

Newton’s Method [1]
H = Ex,y∼DX,Y

[
∇

2 logpθ (y|x)
]

Adagrad
C = Ex,y∼DX,Y

[(
∇ logpθ (y|x) ·∇ logpθ (y|x)>

) 1
2
]

Note Adam is a diagonalized Adagrad + momentum.

22



Relation to 2nd Order Optimization

F = Ex∼DX

[
Ey∼PY|X

[
∇ logpθ (y|x) ·∇ logpθ (y|x)>

]]
= Ex∼DX

[
Ey∼PY|X

[
−∇

2 logpθ (y|x)
]]

Newton’s Method [1]
H = Ex,y∼DX,Y

[
∇

2 logpθ (y|x)
]

Adagrad
C = Ex,y∼DX,Y

[(
∇ logpθ (y|x) ·∇ logpθ (y|x)>

) 1
2
]

Note Adam is a diagonalized Adagrad + momentum.
23



Evolutionary Strategies

Consider an objective Ex∼Px [f (x)], and parameterized density pθ (x).

F−1
∇θEx∼Px [f (x)] = Ex∼PX

[
f (x)F−1

∇θ logpθ (x)
]

By making f (x) invariant to increasing transformations, [2] obtain a
time-continuous gradient-flow ODE.

Choosing the family of pθ and discretizing it with Euler’s method, they recover

• CMA-ES for Gaussian families,

• PBIL for Bernouilli families,

• and more. (NES, CEM, cGA, EMNA, xNES, . . . )

Note This works even if f is not differentiable !
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Pause

Questions / Break ?

Up Next Noisy Natural Gradient ≈ Variational Inference
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Variational Inference for BNNs

Goal
max

ξ

KL
(
qξ (θ)||p(θ |x,y)

)
ELBO

max
ξ

Eθ∼Qθ

[
Ex,y∼DX,Y [logpθ (y|x)]

]
−λKL(qξ (θ)||p(θ))︸ ︷︷ ︸

L (ξ )

With

• (x,y)∼ DX,Y a set of data points,

• p(θ) the prior over the parameter of the model pθ (y|x),
• qξ (θ) the variational posterior over the parameters θ .
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NGPE vs NGVI

Both compute ∇̃ξ = F−1∇ξ L (ξ ).

NGPE [3]
F = Ex∼DX

[
Ey∼PY|X

[
∇ logpθ (y|x) ·∇ logpθ (y|x)>

]]
NGVI [4]

F = Eθ∼QΘ

[
∇ logqξ (θ) ·∇ logqξ (θ)

>
]

Note This version is often tractable, if qξ is nice.
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A Cool Trick

For any f (θ), [5]

∇µEθ∼N(µ,Σ) [f (θ)] = Eθ∼N(µ,Σ) [∇θ f (θ)]

∇ΣEθ∼N(µ,Σ) [f (θ)] = Eθ∼N(µ,Σ)

[
∇

2
θ f (θ)

]

Applied to the ELBO
Assuming qξ is Gaussian with mean µ and precision Λ,

∇̃µ = Λ
−1Eθ∼Qθ

[∇θ logpθ (y|x)+λ∇θ logp(θ)] ,

∇̃Λ =−Eθ∼Qθ

[
∇

2
θ logpθ (y|x)+λ∇

2
θ logp(θ)

]
−λΛ.
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Update Rules

Assuming

• p(θ) = N(0,ηI),
• α,β learning rates,
• N mini-batch size,

µ ← µ +αΛ
−1
[

∇θ logpθ (y|x)−
λ

Nη
θ

]

Λ←
(

1− λβ

N

)
Λ−β

[
∇

2
θ logpθ (y|x)−

λ

Nη
I
]

Note ∇2
θ

logpθ (y|x) is annoying. Let’s replace it with (a diagonal) F !
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Noisy Natural Gradient

35

Noisy Adam Note The major modification is
sampling the parameters.

Note A similarly simple modification
can be applied to K-FAC.

Conclusion
Noisy Natural Gradient =⇒
Variational Inference !

Quiz Does this ring a bell ?



Experiment – Regression
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Conclusion Noisy K-FAC optimizes the ELBO faster and better.
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Experiments – Boston Housing

Conclusion Noisy K-FAC provides decent approximation of the full precision
matrix.
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Experiments – CIFAR10

• D Data augmentation
• B Batch normalization
• N/A Unstable training

Conclusion Noisy methods generalize better.
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Experiments – CIFAR10

Conclusion Noisy methods are better calibrated.

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.1658

Ac
cu

ra
cy

Av
g.

 c
on

fid
en

ce

K-FAC

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.1179

Ac
cu

ra
cy

Av
g.

 c
on

fid
en

ce

ECE: 0.0890

Ac
cu

ra
cy

Av
g.

 c
on

fid
en

ce

noisy K-FAC

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

ECE: 0.0254

Ac
cu

ra
cy

Av
g.

 c
on

fid
en

ce

39



Experiments – Active Learning

UCI Datasets 20 training samples, 100 testing samples, rest is unlabeled pool.
Setup
Repeat for 10 iterations.

1. Fit train data.

2. Compute test error.

3. Compute posterior predictive variance for each pool sample.

4. Choose sample which most reduces posterior entropy. (highest info. gain)

5. Add it to train set with its label.

Note HMC is considered the gold standard.
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Experiments – Active Learning

-R Samples uniformly at random. -A Samples from active learning.

Conclusion NNG-MVG_R performs better than NNG-MVG_A and is closer to
HMC_A than PBP_A and NNG-FFG_A. (But other uncertainty measures might be

required.)
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Experiments – Reinforcement Learning

Setup Use VIME, replacing BBB’s posterior with the one from NNG-MVG.

Conclusion Better uncertainty estimates help for exploration.
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Weight-Perturbed Adam

43

Contrast with Zhang & al.
1. Focuses on Gaussian mean-field.

(i.e. diagonal covariances)

2. Also motivated by “use natural

gradient for VI and then simplify

it.”

3. Their way of simplification:

3.1 Start with Newton,

3.2 Approximate Hessian with

GGN,

3.3 Approximate Hessian with g2
,

3.4 Add momentum,

3.5 Obtain Vadam.

4. Vprop, Vadagrad, and variants.



Experiments – Logistic Regression

Conclusion Choosing different Hessian approximations results in qualitatively
different posteriors. (Vadam vs VOGN-1)
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More on Information Geometry

Empirical
• Two-Stage Metric Learning, Wang et al., 2014
• Riemann Manifold Langevin and Hamiltonian Monte Carlo, Girolami et al., 2011
• Transfer Learning: A Riemannian Geometry Framework, Zanini et al., 2018
• A Natural Policy Gradient, Kakade, 2002
• Information Geometry of Quantum Resources, Girolami, 2017

Theoretical
• Information Geometry of Wasserstein Divergence, Karakida & Amari, 2017
• An Information Geometry of Statistical Manifold Learning, Sun &
Marchand-Maillet, 2014

• Koszul Information Geometry and Souriau Geometric Temperature/Capacity of
Lie Group Thermodynamics, Barbaresco, 2014
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Recommended Readings

1. New Perspectives and Insights on The Natural Gradient, Martens, 2014.

2. Objective Improvement in Information-Geometric Optimization, Ollivier,

2013. (Youtube)

3. Information Geometry for Neural Networks, Wagenaar, 1998.
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Questions

Another relation to ELBO ?
θt−α∇̃θtEx∼pθt

[f (x)]≈ argmax
θ ′

{
Ex∼p

θ ′ [f (x)]−
1

2α
KL(pθt ||pθ ′)

}
Why the Fisher ?
• Motivation: The KL is the go-to divergence for distributions.

• Motivation: IGO can result in high densities for diverse parameter solutions.

• Consequence: Many nice theoretical properties. (Invariances)

Why not use the total variation divergence or optimal transport metrics ?
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