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Outline

Goal
Draw connection from natural gradient to various ML/optimization topics.

Outline

Euclidean and Riemannian Gradient Optimization
Relation to Second-Order Optimization

Relation to Evolutionary Strategies

Relation to Variational Inference

Conclusions
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Euclid vs Riemann

Euclidean Geometry

* Any 2 points can be connected.

* A straight line can be extended infinitely.

* Acircle is described by its center and radius.

* All right angles are equal to one another.

+ If two lines intersect, the sum of interior angles of any segment connecting
them is less than 180 degrees.

Riemannian Geometry drops the last two axioms, in order to study smooth
manifolds endowed with a local metric.
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Computing Distances

Question How do we compute the shortest distance between 6, and 6, on a
differentiable manifold M ?
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Computing Distances

Question How do we compute the shortest distance between 6, and 6, on a
differentiable manifold M ?

Answer Find the geodesic curve C and then,

4(6,,6) :./_O;HC’(I)Hdt:/_Z«/C’(I)TFC’(t)dt

Warning In the Riemannian case, the metric F depends on t.
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Why is it relevant ?

Observation 1 Information about the geometry of the manifold can help us
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navigate it.
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Riemannian Gradient Optimization

Gradient Descent

011 =6, — OlVetf(et)
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Riemannian Gradient Optimization

Gradient Descent

1
6.1 = 6 — 0V f(6) ~ argmax {f<6’> ~5a Her—e’Hi} +0 (o)
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Riemannian Gradient Optimization

Gradient Descent
1
01 =6, —aVef(6,) ~ argrrbz}x {f(el) " %a HG, — 9"‘;} +0 (062)

Problem Why use L, as the metric ?
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Riemannian Gradient Optimization

Gradient Descent
1
01 =6, —aVef(6,) ~ argrrbz}x {f(el) " %a HG, — 9"‘;} +0 (062)

Problem Why use L, as the metric ?
Riemannian Gradient Descent
011 =6, — aF_Ing(O,)

Remark 1 We use F~! to recondition the problem back to Euclidean space.
(c.f. Nash Embedding Theorem)
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The Natural Gradient

Observation 2 Our ML models are probability distributions.

Remark 2 We often minimize the KL divergence.
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The Natural Gradient

Observation 2 Our ML models are probability distributions.
Remark 2 We often minimize the KL divergence.
Idea Let’s put 2 and 2 together.

Optimize on the Riemannian space of probability distributions defined by the KL
divergence.

F=Epy Vlogpe(x)'wogl?e(X)T]
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The Natural Gradient

Observation 2 Our ML models are probability distributions.
Remark 2 We often minimize the KL divergence.
Idea Let’s put 2 and 2 together.

Optimize on the Riemannian space of probability distributions defined by the KL
divergence.

F=Epy Vlogpe(x)'wogl?e(X)T]
Vo =F'Vf(6)
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Parameter & Function Space

Parameter Space Function Space

e

e
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Popular Variation

Let

* (x,y) ~ Dy y be a set of data points, and
« F~'Vgf(0) be the natural gradient of the model pg (y|x).
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Popular Variation

Let
* (x,y) ~ Dy y be a set of data points, and
« F~'Vgf(0) be the natural gradient of the model pg (y|x).

True Fisher Matrix

F = Expy [Eywpy‘x [V logpo(vlx) - Vlogpe (y\X)TH
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Popular Variation

Let
* (x,y) ~ Dy y be a set of data points, and
« F~'Vgf(0) be the natural gradient of the model pg (y|x).

True Fisher Matrix

F = Expy [Eywpy‘x [V logpo(vlx) - Vlogpe (y\X)TH

Empirical Fisher Matrix

F=E.yp,, [V logpe (y|x) -Vlogpe(Y\X)T}
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The Issue

Computing F~! is often intractable !

Computing those expectations is hard.
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The Issue

Computing F~! is often intractable !

Computing those expectations is hard.

Consider a Gaussian model with 6 = [u,X]. If |u| =n,

+ storing F requires ¢ (n*) memory,
+ computing F~! requires at least & ((n*)>3") time complexity.
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The Issue

Computing F~! is often intractable !

Computing those expectations is hard.

Consider a Gaussian model with 6 = [u,X]. If |u| =n,

+ storing F requires ¢ (n*) memory,
+ computing F~! requires at least & ((n*)>3") time complexity.

We resort to approximations such as K-FAC, Topmoumoute, TANGO, TRPO, etc...
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Relation to 2nd Order Optimization

F = Expy [Eywpy‘x [V logpo(vlx) - Vlogpe (y\X)TH

== EXNDX |:E)’~PY\X [_vz logpe (y|x)j|i|
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Relation to 2nd Order Optimization

F = Expy [EyNPY‘X [V logpo(vlx) - Vlogpe (y\X)TH
== EXNDX [E)’NPY\X [_vz logpe (y|x)j|i|

Newton’s Method [1]

H= ]EXJNDX,Y [Vz logpe (y|x)]
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Relation to 2nd Order Optimization

F =E,upy [EMW [V logpg (y]x) - Vlogpe (y\X)TH
— EXNDX [E)’pr‘x [_vz logpe (y|x)j|i|
Newton’s Method [1]
H= ]EXJNDX,Y [Vz 10gp9(Y|x)]
Adagrad

1
€= vy, | (Viogpatin) Viogpatin)”)'|

Note Adam is a diagonalized Adagrad + momentum.
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Evolutionary Strategies

Consider an objective E,.p_[f(x)], and parameterized density pg(x).

F7'VoExp, [f(x)] = Expy [f(x)F ' Vglogpe(x)]
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Evolutionary Strategies

Consider an objective E,.p_[f(x)], and parameterized density pg(x).

F'VoEp, [f(x)] = Exwpy [f(x)F ' Vg logpe(x)]
By making f(x) invariant to increasing transformations, [2] obtain a
time-continuous gradient-flow ODE.
Choosing the family of pg and discretizing it with Euler’'s method, they recover

+ CMA-ES for Gaussian families,
* PBIL for Bernouilli families,
« and more. (NES, CEM, cGA, EMNA, xNES, ...)

UsC



Evolutionary Strategies

Consider an objective E,.p_[f(x)], and parameterized density pg(x).

F'VoEp, [f(x)] = Exwpy [f(x)F ' Vg logpe(x)]
By making f(x) invariant to increasing transformations, [2] obtain a
time-continuous gradient-flow ODE.
Choosing the family of pg and discretizing it with Euler’'s method, they recover

+ CMA-ES for Gaussian families,
* PBIL for Bernouilli families,
« and more. (NES, CEM, cGA, EMNA, xNES, ...)

Note This works even if f is not differentiable !
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Pause

Questions / Break ?

Up Next Noisy Natural Gradient = Variational Inference
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Variational Inference for BNNs

Goal

mgax KL (615 (6)||p(9|x,y))
ELBO

maxEo-o, [E.cy~yy [logpo (v1)]] — AKL(qz(0)]p(6))

g

Z(&)

With

* (x,y) ~ Dy y a set of data points,

* p(0) the prior over the parameter of the model pg(y|x),
* q¢(6) the variational posterior over the parameters 6.
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NGPE vs NGVI

Both compute V; = F~1V:.Z(£).
NGPE [3]

F = Eyp, [Eywpm [V logpo(vlx) - Vlogpe (y\X)T”
NGVI [4]

F=Eg.0, [Vlogqi(e) . Vlogqé(B)T]

Note This version is often tractable, if g¢ is nice.
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NGPE vs NGVI

Both compute V; = F~1V:.Z(£).
NGPE [3]

F = Eyp, [Eywpm [V logpo(vlx) - Vlogpe (y\X)T”
NGVI [4]

F=Eg.0, [Vlogqi(e) . Vlogqé(B)T]

Note This version is often tractable, if g¢ is nice.
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A Cool Trick

For any £(6), [5]

VuEo vz f(8)] =Egnur) [Vef (0)]

Vo nuz) [F(0)] = Eonux) [Vaf (6)]
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A Cool Trick

For any £(6), [5]

VuEo vz f(8)] =Egnur) [Vef (0)]
ViEo vz F(0)] =Eonus) [Vaf(0)]

Applied to the ELBO
Assuming g is Gaussian with mean p and precision A,

Vi =A"Eg~g, [Vologps(ylx) + AVglogp(6)],
Vi = —Eg0, [V% logpe (y|x) + AV%, logp(O)] — AA.
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Update Rules

Assuming

*+ p(0) =N(0,n1),
* a,f learning rates,
* N mini-batch size,

e p+an! [Ve logpe (ylx) — 13;79]

A+ (1 - kﬁ) A-B [V% logpe (y[x) — Nlnl]
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Update Rules

Assuming

*+ p(0) =N(0,n1),
* a,f learning rates,
* N mini-batch size,

e p+an! [Ve logpe (ylx) — 1\;1”9]

A+ (1 - kﬁ) A-B [V% logpe (y[x) — Nlnl]

Note V3 logps(y|x) is annoying. Let's replace it with (a diagonal) F'!
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Noisy Natural Gradient

Noisy Adam

Algorithm 1 Noisy Adam. Differences from standard Adam
are shown in blue.

Require: a: Stepsize
Require: i, 55: Exponential decay rates for updating
and the Fisher F
Require: )\, 7, 7. : KL weighting, prior variance, extrinsic
damping term
m <« 0
Calculate the intrinsic damping term i, = ﬁ, total
damping term v = Yin + Yex
while stopping criterion not met do
W~ N (1, 2 diag(f + 7))
v Vi logp(y|x, w) —yin - W
m« fB-m+(1—p61)v (Update momentum)
£ Bo-f4(1—Ba) (Vwlogp(yx, w)?
m <« m/(1-pF)
m <+ m/(f +7)
p p+ao-m  (Update parameters)
end while

UsC

Note The major modification is
sampling the parameters.

Note A similarly simple modification

can be applied to K-FAC.

Conclusion
Noisy Natural Gradient —
Variational Inference !

Quiz Does this ring a bell ?



Experiment - Regression

Training ELBO - Protein
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Iterations

Conclusion Noisy K-FAC optimizes the ELBO faster and better.

UsC



Experiments - Boston Housing

(a) Fully factorized (b) Matrix-variate (c) Block tridiagonal (d) Full covariance

Figure 1: Normalized precision matrices for Gaussian variational posteriors trained using noisy natural gradient. We used a
network with 2 hidden layers of 15 units each, trained on the Boston housing dataset.

Conclusion Noisy K-FAC provides decent approximation of the full precision
matrix.
UsC



Experiments - CIFAR10

+ D Data augmentation
* B Batch normalization
* N/A Unstable training

METHOD NETWORK | TEST ACCURACY

| D B |D+B
SGD VGG16 | 81.79 | 88.35 | 85.75 | 91.39
KFAC VGG16 | 82.39 | 88.89 | 86.86 | 92.13
BBB VGG16 |82.82 | 88.31 | N/A | N/A
NOISY-ADAM | VGG16 | 82.68 | 88.23 | N/A | N/A
NoISY-KFAC | VGG16 | 85.52 | 89.35 | 88.22 | 92.01

Conclusion Noisy methods generalize better.
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Experiments - CIFAR10

Conclusion Noisy methods are better calibrated.
K-FAC — noisy K-FAC

Accuracy

Accuracy

: I eCE: 00254
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Experiments - Active Learning

UCI Datasets 20 training samples, 100 testing samples, rest is unlabeled pool.

Setup
Repeat for 10 iterations.

Fit train data.
Compute test error.
Compute posterior predictive variance for each pool sample.

Choose sample which most reduces posterior entropy. (highest info. gain)
5. Add it to train set with its label.

AN =

Note HMC is considered the gold standard.
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Experiments - Active Learning

-R Samples uniformly at random. -A Samples from active learning.

Table 3: Average test RMSE in active learning,.

DATASET PBP.R PBP.A NNG-FFG.R  NNG-FFG.A NNG-MVG.R NNG-MVG.A HMC.R HMC.A

BOSTON 6.716+0.500  5.480£0.175  5.911+0.250  5.4354+0.132  5.8314+0.177  5.220£0.132  5.750+0.222  5.156+0.150
CONCRETE 12.4174+0.392  11.89440.254 12.583+0.168 12.5631+0.142 12.3014£0.203 11.671£0.175 10.564+0.198 11.48440.191
ENERGY 3.74310.121 3.399+0.064  4.0114+0.087  3.7614+0.068  3.635+£0.084  3.211+0.076  3.26440.067 3.118+0.062
KIN8NM 0.2594+0.006  0.254+0.005  0.246+0.004  0.252+0.003  0.2434+0.003  0.244+0.003  0.226+0.004  0.223+0.003
NavAL 0.0154+0.000  0.016+0.000  0.013£0.000  0.013+0.000  0.010£0.000  0.009£0.000 0.013+0.000  0.012+0.000
Pow. PLANT  5.3124+0.108  5.068+0.082  5.812+0.119  5.423+0.111 5.377+0.133 497440078  5.22940.097 4.800+0.074
WINE 0.945+0.044  0.809£0.011  0.730+0.011  0.748+0.008  0.752+0.014  0.746=£0.009  0.740+0.011 0.749+0.010
YACHT 5.3884+0.339  4.508+0.158  7.381+0.309  6.583+0.264  7.192+0.280  6.371£0.204  4.644+0.237 3.211+0.120

Conclusion NNG-MVG_R performs better than NNG-MVG_A and is closer to
HMC_A than PBP_A and NNG-FFG_A. (But other uncertainty measures might be
required.)
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Experiments - Reinforcement Learning

Setup Use VIME, replacing BBB's posterior with the one from NNG-MVG.
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Figure 3: Performance of [TRPO] TRPO baseline with Gaussian control noise, [TRPO+BBB] VIME baseline with BBB
dynamics network, and [TRPO+NNG-MVG] VIME with NNG-MVG dynamics network (ours). The darker-colored lines
represent the median performance in 10 different random seeds while the shaded area show the interquartile range.

Conclusion Better uncertainty estimates help for exploration.
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Weight-Perturbed Adam

Contrast with Zhang & al. Vadam
. f I d 1: while not converged do

1. Focuses on Gaussian mean-field. 2 @ p+tooe wheree~N(0,T), 0 1/yNs + X

(i.e. diagonal covariances) y ga:d‘)mv'yl Sam(”g’ ﬁ;‘;a‘a example D;
. —Vlog p(D;
2. Also motivated by “use natural 55 meymt(1-71) (g + A/N)
; i i 6: s ms+(l-7)(gog)
gradient for VI and then simplify 7 em/(1-a0). § e s/(1-9)
it.” 8 pip—am/(Va+A/N)
. . e e, 9 tt+1
3. Their way of simplification: 10: end while

3.1 Start with Newton,

3.2 Approximate Hessian with
GGN,

3.3 Approximate Hessian with g2,

3.4 Add momentum,

3.5 Obtain Vadam.

4. Vprop, Vadagrad, and variants.
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Experiments - Logistic Regression

e
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Figure 2. Experiments on Bayesian logistic regression showing (a) posterior approximations on a toy example, (b) performance on
‘USPS-3v5’ measuring negative ELBO, log-loss, and the symmetric KL divergence of the posterior approximation to MF-Exact, (c)
symmetric KL divergence of Vadam for various minibatch sizes on ‘Breast-Cancer’ compared to VOGN with a minibatch of size 1.

Conclusion Choosing different Hessian approximations results in qualitatively
different posteriors. (Vadam vs VOGN-1)
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More on Information Geometry

Empirical
* Two-Stage Metric Learning, Wang et al., 2014
* Riemann Manifold Langevin and Hamiltonian Monte Carlo, Girolami et al., 2011
* Transfer Learning: A Riemannian Geometry Framework, Zanini et al., 2018
* A Natural Policy Gradient, Kakade, 2002
* Information Geometry of Quantum Resources, Girolami, 2017

Theoretical

* Information Geometry of Wasserstein Divergence, Karakida & Amari, 2017

* An Information Geometry of Statistical Manifold Learning, Sun &
Marchand-Maillet, 2014

* Koszul Information Geometry and Souriau Geometric Temperature/Capacity of
Lie Group Thermodynamics, Barbaresco, 2014
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Recommended Readings

1. New Perspectives and Insights on The Natural Gradient, Martens, 2014.
2. Objective Improvement in Information-Geometric Optimization, Ollivier,

2013. (Youtube)
3. Information Geometry for Neural Networks, Wagenaar, 1998.
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Questions

Another relation to ELBO ?

- 1
6, — Vo Erpy, [f(x)] = arg max {EXNPQ/ [f (x)] = EKL(PG, | |Pe/)}

Why the Fisher ?

* Motivation: The KL is the go-to divergence for distributions.
+ Motivation: IGO can result in high densities for diverse parameter solutions.
+ Consequence: Many nice theoretical properties. (Invariances)

Why not use the total variation divergence or optimal transport metrics ?
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