Policy Learning and Evaluation with

Randomized Quasi-Monte Carlo

Séb Arnold, Pierre L'Ecuyer, Liyu Chen, Yi-fan Chen, Fei Sha March 10, 2022

Summary

• Replacing MC with RQMC accelerates learning and improves value estimation in RL.

Main Contributions

- We propose to combine policy gradients with randomized QMC.
 - Retains flexibility of policy gradients (eg, continuous actions, non-linear policies, etc).
 - Readily compatible with different policy gradient formulations (eg, actor-critic).
- Empirically, we show:
 - RQMC improves policy learning and evaluation, even for SOTA algorithms.
 - RQMC reduces variance in gradients and policy values.
 - RQMC complements other variance reduction techniques.

Background

Policy Gradients

• Iterate: $\pi \leftarrow \pi - \eta \nabla_{\pi} \mathbb{E}_{s,a}[Q^{\pi}(s,a)]$

Randomized Quasi-Monte Carlo (RQMC)

Monte Carlo:

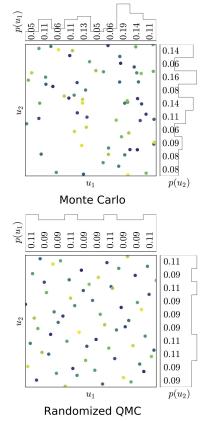
• Sample points $u \sim U(0; 1)$ uniformly at random.

Quasi-Monte Carlo:

• Deterministically generate a low-discrepancy point set.

Randomized Quasi-Monte Carlo:

• Scramble & randomly shift a QMC point set to retain low-discrepancy.



Policy Evaluation with RQMC

Goal

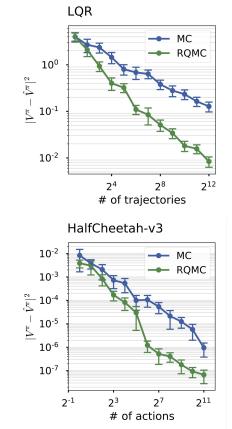
• Efficiently estimate: $V^{\pi} = \mathbb{E}_{s,a}[Q^{\pi}(s,a)]$

Method

• Let: $a = \pi(s, u) = \mu(s) + \sigma(s) \odot F^{-1}(u)$, where u is an RQMC point.

Policy evaluation when approximating V^{π} with:

- Expected Returns: $V^{\pi} \approx \frac{1}{N} \sum_{i=0}^{N} \left[\sum_{t=0}^{T} R(s_t^{(i)}, a_t^{(i)}) \right]$
 - Sample trajectories, average sum of rewards.
- Learned Critic: $V^{\pi} \approx \mathbb{E}_{s_k} \left[\frac{1}{N} \sum_{i=0}^{N} \hat{Q}^{\pi}(s_k, \pi(s_k, u_k^{(i)})) \right]$
 - Sample states from buffer replay, average Q-values.



Policy Learning with RQMC

Goal

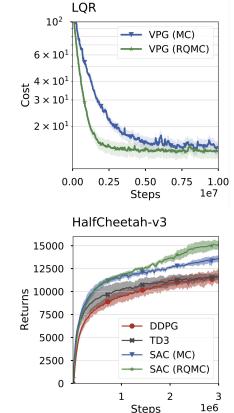
• Efficiently learn a policy: $\arg \max_{\pi} \mathbb{E}_{s,a}[Q^{\pi}(s,a)]$

Method

- Let: $a = \pi(s, u) = \mu(s) + \sigma(s) \odot F^{-1}(u)$, where u is an RQMC point.
- Learn with
 - Expected Returns \rightarrow Vanilla Policy Gradient (VPG)
 - Learned Critic \rightarrow Soft Actor-Critic (SAC)

Experimental results

- RQMC outperforms MC on all scenarios.
 - Significantly improves learning with VPG.
 - Combines with and improves upon SOTA algorithms.



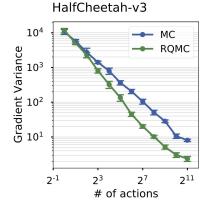
Analyses and Ablations

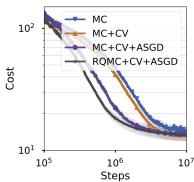
RQMC improves gradient estimation

- Why does RQMC improve upon MC?
 - Hypothesis: variance reduction.
- Experiment:
 - Collect trajectories mid-training.
 - Measure gradient variance and alignment.
 - Results: 5x lower gradient variance.

RQMC combines with other variance reduction techniques

- Can RQMC complement other variance reduction techniques (VRTs)?
- Experiment:
 - Compare MC with different VRT combinations.
 - Results: RQMC further improves upon
 - Control variates (CV)
 - Accelerated SGD (ASGD)





Thank You!

Poster # 3166

Mon 28 Mar 10:15 a.m. PDT – 11:45 a.m. PDT

Code

Website seb

Contact

9			
<u>sebarnold.ne</u>	et/pro	<u>oject</u>	<u>:s/qrl</u>
seb.arnold@	usc.e	du	

github.com/seba-1511/grl



