Uniform Sampling Over Episodic Difficulty

S. M. R. Arnold*, G. S. Dhillon*, A. Ravichandran, S. Soatto

October 18, 2021

Episodic Training in Few-Shot Learning

Few-Shot Learning

• Learn a model to solve new tasks with limited labelled data.

Episodic Training in 3 Steps

- 1. Sample an episode from distribution.
- 2. Solve the episode with limited data.
- 3. Update the model to improve generalization of solution.

Plenty of Recent Methods

- Gradient-based: MAML, ANIL, MetaCurvature, KFO, MT-Nets, ...
- Metric-based: ProtoNets, MetaOptNet, FEAT, DeepEMD, ...

This Paper: A Closer Look at Episodic Sampling

Driving Question

• How should we sample episodes for best transfer accuracy?

Contributions

- Analysis of episode difficulty and its distribution.
- Simple method to approximate any episodic sampling distribution.
- Main result: uniform sampling over episode difficulty improves episodic training.

Few-Shot Classification Episodes

Baseline Episode Sampling

- 1. Sample *n* classes from base dataset.
- 2. Sample k samples / class for support set τ_S .
- 3. Sample k' samples / class for query set τ_Q .

Solving an Episode with ProtoNets

• Compute class centroids on support set:

$$\phi^c_{ heta} = rac{1}{k} \sum_{\substack{(x,y) \in au_S \\ y = c}} \phi_{ heta}(x)$$

• Classify query set with nearest centroid:

$$l_{\theta}(y \mid x, \tau_{S}) = \frac{\exp\left(-d(\phi_{\theta}(x), \phi_{\theta}^{y})\right)}{\sum_{y' \in \mathcal{C}_{\tau}} \exp\left(-d(\phi_{\theta}(x), \phi_{\theta}^{y'})\right)}$$

"Prototypical Networks for Few-Shot Learning", Snell et al., NeurIPS 2017.

aws

USC University of

Distribution of Episode Difficulty

Definition

• The difficulty of an episode au is given by:

 $\Omega_{l_{ heta}}(au) = -\log l_{ heta}(au)$

for model likelihood *l*, support set S, and query set Q.

Why This Definition?

- Easy to compute, readily available during training.
- Model-agnostic applies to all methods.
- No discretization artifacts (unlike, say, accuracy).

Empirical Analysis

For many algorithms and models:

Episode difficulty is approximately normally distributed.

Implicit Dependence on Modelling Choices

Is episode difficulty the same across different...

... model architectures? 🖌

- Compare CNN4 v.s. ResNet12.
- Average Spearman correlation: 0.59.

... model parameters?

... training algorithms?

Implicit Dependence on Modelling Choices

Is episode difficulty the same across different...

... model architectures? 🖌

- Compare CNN4 v.s. ResNet12.
- Average Spearman correlation: 0.59.
- ... model parameters? 🖌
 - Compare across iterations in training run.
 - Hard episodes remain hard; easy remain easy.

... training algorithms?

Implicit Dependence on Modelling Choices

Is episode difficulty the same across different...

... model architectures? 🖌

- Compare CNN4 v.s. ResNet12.
- Average Spearman correlation: 0.59.
- ... model parameters? 🖌
 - Compare across iterations in training run.
 - Hard episodes remain hard; easy remain easy.
- ... training algorithms? 🖌
 - Compare across MAML, ANIL, ProtoNet (Euclidean & Cosine).
 - Average Spearman correlation: 0.65.

How should we sample episodes?

5 Candidate Distributions

- Baseline Normal distribution over difficulty.
- Easy Sample uniformly over the easier 50% of episodes.
- Hard Sample uniformly over the harder 50% of episodes.
- Curriculum Sample easier episode when training starts, harder episodes towards end.
- Uniform Sample uniformly over the difficulty range.

A Simple Method to Study Episode Sampling

AWS Southern Californ

Importance Sampling for Episodic Training

• **Reweight episodes** to approximate target distribution $p(\tau)$:

 $\mathop{\mathrm{E}}_{\tau \sim q(\cdot)} \left[w(\tau) \log l_{\theta}(\tau) \right] \quad \text{where} \quad w(\tau) = \frac{p(\tau)}{q(\tau)}$

and $q(\tau)$ is the distribution induce by Baseline sampling.

Adjusted Mini-Batching with Expected Sample Size

• Get the right number of sample from the target distribution:

$$\begin{split} \underset{\tau \sim p(\cdot)}{\operatorname{E}} & \left[\log l_{\theta}(\tau) \right] \approx \frac{1}{\operatorname{ESS}(\mathcal{B})} \sum_{\tau \in \mathcal{B}} w(\tau) \log l_{\theta}(\tau) \\ & \text{where} \quad \operatorname{ESS}(\mathcal{B}) = \frac{(\sum_{\tau \in \mathcal{B}} w(\tau))^2}{\sum_{\tau \in \mathcal{B}} w(\tau)^2} \end{split}$$

sampler.reset()
for episode in batch:
 loss = compute_loss(episode)
 is_weight = sampler.weight(loss)
 sampler.update(loss)
 (is_weight * loss).backward()
model.parameters /= sampler.ess()

Sampling Matters for Episodic Training

Experimental Setup

Compare 5 candidate distributions on different:

- Architectures: CNN4, ResNet12
- Algorithms: MAML, ANIL, ProtoNet Euclidean & Cosine
- Datasets: mini-ImageNet, tiered-ImageNet
- Setting: 5-ways 1-shot, 5-ways 5-shots

Total: 24 different few-shot scenarios.

Results

Uniform sampling dominates, Baseline second best.

24 Few-Shot Scenarios

Sampling Improves Cross-Domain Transfer

Experimental Setup

Compare Baseline v.s. Uniform when:

- training on mini-ImageNet or tiered-ImageNet
- testing on:
 - CUB-200,
 - Describable Textures,
 - FGVC-Aircraft, and
 - VGG Flowers.

Total: 64 Cross-Domain Scenarios.

Results

Uniform sampling dominates.

64 Cross-Domain Scenarios

... And Improves Upon SOTA

	Mini-ImageNet		Tiered-ImageNet	
	1-shot (%)	5-shot (%)	1-shot (%)	5-shot (%)
FEAT	66.02±0.20	81.17±0.14	70.50±0.23	84.26±0.16
+ UNIFORM (Online)	66.27±0.20	81.54±0.14	70.61±0.23	84.42±0.16

Experimental Setup

- Compare Baseline *v.s.* Uniform when training with FEAT.
- ResNet12 on mini-ImageNet & tiered-ImageNet.

Results

Uniform sampling also improves SOTA algorithms.

"Few-Shot Learning via Embedding Adaptation with Set-to-Set Functions", Ye, Hu, et al., CVPR 2020.

Thank You

Takeaways

- 1. Sampling matters in episodic training.
- 2. Episodic difficulty is (mostly) agnostic to architecture, algorithm, and parameter choice.
- 3. Uniform sampling outperforms other sampling schemes.

Learn More

- PDF, poster, slides: <u>sebarnold.net/projects/eis</u>
- Code: <u>bit.ly/3p7cYz5</u> or <u>learn2learn.net</u>
- Contact: <u>smr.arnold@gmail.com</u>

Guneet S. Dhillon*

Avinash Ravichandran Stefano Soatto

